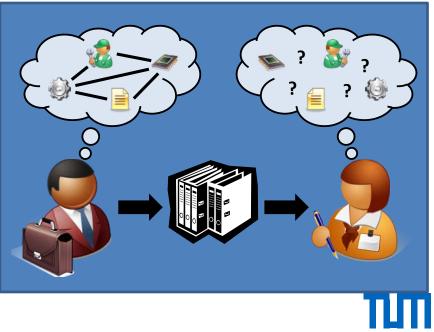


Applying the Structural Complexity Management to Knowledge Transfer in Small and Medium-Sized Companies

Maik Maurer, Hermann Klinger, Alexander Benz

Initial situation

- Products & services become more knowledge driven
- Transfer of personnel knowledge represents a competitive factor
- Knowledge assures the company's core competences and unique characteristics
- Need for safeguard organizational memory
- Technical-driven solutions for knowledge transfer gain more economical importance
- Such solutions often neglect dependencies that make bits of information useful

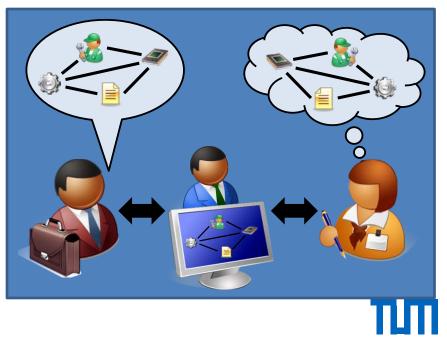

Technische Universität München

• FESTO introduced additional forms of transfer to stimulate communication of knowledge

Produktentwicklung

Problem

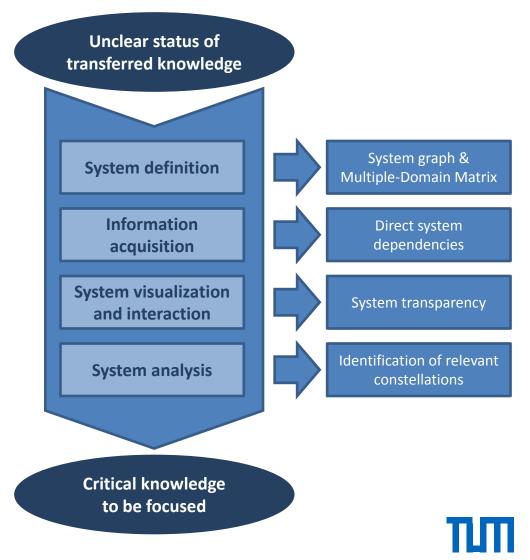
- Employees are forced to acquire more knowledge in shorter time
- Half-life of existing knowledge is decreasing
- \rightarrow Necessity of lifelong learning
- Knowledge management systems inadequate for SMEs
- → Knowledge about dependencies difficult to communicate
- Less available specialists remain at a company for less time, but generate more complex knowledge during their employment
- Need for a highly effective and efficient method of knowledge transfer that can be applied without intense prior preparation



Technische Universität München

Approach: Basic idea

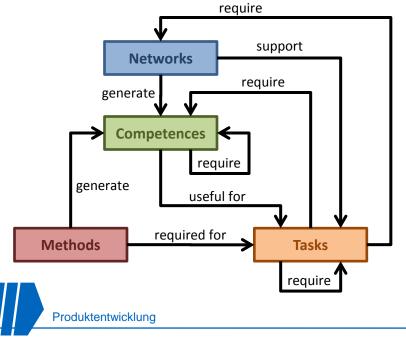
- Specific requirements for knowledge transfer in SMEs
 - High transfer frequency
 - Short time slots
 - Maintaining a high quality of transferred knowledge
- → Transfer method must be easy to apply
- \rightarrow Involvement of a moderator
- → Software support for
 - Information acquisition
 - Visualization
 - Analysis



Technische Universität München

Approach: Four-step model

- Which knowledge components receptors require for executing relevant tasks?
- Which differences exist between the expert and the knowledge receptor in the handling of tasks and competences?
- Systematic approach based on the "Structural Complexity Management"

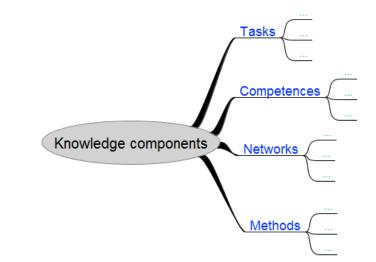


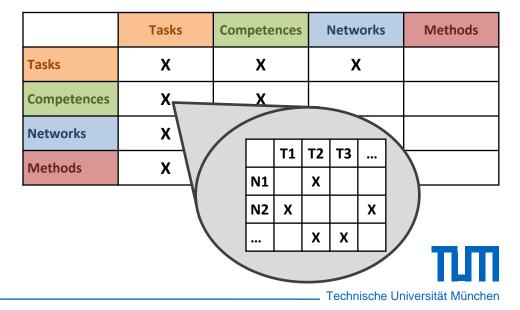
Technische Universität München

Produktentwicklung

System definition

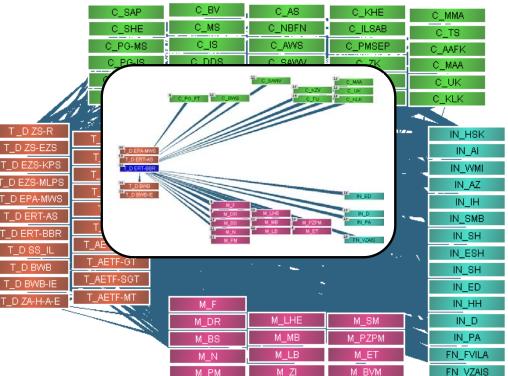
- Identification of relevant domains
- Definition of general dependencies \rightarrow system graph
- MDM form is basis for the information acquisition
- Generic model can be adapted to specific use cases
- → The adequate system definition is highly decisive for subsequent effort and quality of the transfer process




	Tasks	Compe- tences	Networks	Methods
Tasks	require	require	require	
Competences	useful for	require		
Networks	support	generate		
Methods	required for	generate		

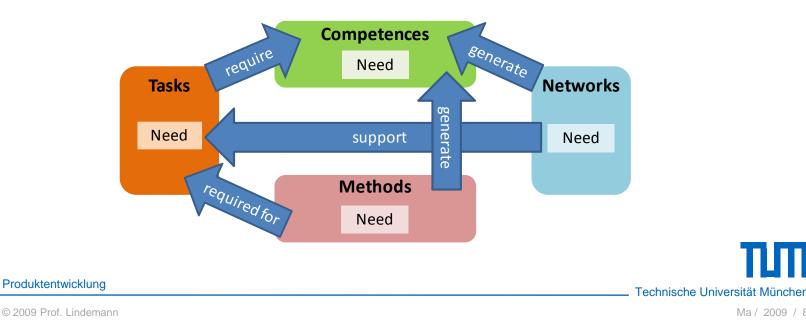
Information acquisition

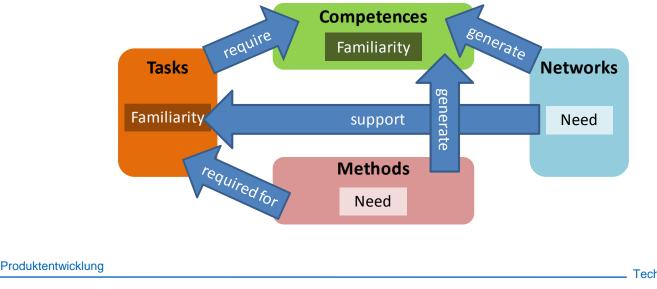
- Interviews with experts required
- Mind map as basic collection of elements
- ~100 knowledge elements
- 6000 possible dependencies
- Half of the matrix can be excluded from consideration
- → Information acquisition represents the most timedemanding part of the presented approach
- → Resulting network quality depends on the quality of information acquisition



Produktentwicklung

System visualization and interaction


- Knowledge components arranged in four domain blocks
- Expert specified more than 800 dependencies
- → entire network can not provide deeper insight
- But: local surrounding of specific knowledge components can be helpful
- Interaction with graph representation allows problem specific access to the knowledge network.


System analysis: Required knowledge packages

- Which knowledge components does the receptor require for executing relevant tasks?
- Visualization of non-familiar knowledge components (knowledge receptor) ٠
- Non-familiar tasks not linked to further components • \rightarrow Learning by doing
- Non-familiar tasks linked to further components • \rightarrow Combined teaching (package)

System analysis: Different management of tasks

- Which differences exist between the expert and the knowledge receptor in the handling of tasks and competences?
- Visualization of familiar tasks and competences (knowledge receptor)
- Visualization of non-familiar networks and methods (knowledge receptor)
- Familiar task connected to non-familiar network or method
 Discrepancy in task processing

Technische Universität München

Project application

- Scope: ~100 knowledge components
- Invest on knowledge network
 - Knowledge owner: 2 days for network compilation
 - Knowledge receptor: 1 hour for specification of knowledge level
 - Moderator: 4 days for workshops and preparation

Result

- Determination of teaching strategies for knowledge components
 - Learning by doing
 - Packaging
- Identification of discrepancies in handling specific tasks

→ Focus on relevant points of discussion

Produktentwicklung

Conclusion and outlook

- Methodical knowledge transfer process has to meet specific requirements
 - High transfer frequency
 - Short time slots for transfers
 - Remain high quality of transferred knowledge
- Newly created approach displayed good usability in practice
 - Involved employees did not need intense method training
 - Only little time required for information acquisition
 - Identification of significant knowledge packages for closer consideration
 - Identification of discrepancies in task handling
- Simplification and acceleration for the knowledge transfer process
- Required amount of effort acceptable for SMEs

